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SOLUTIONS FOR ASSIGNMENT #9

Reading Assignments:
Sections 4.8 and 5.1 of Peskin and Schroeder.

Problem 1
Do Problem 4.3 in Peskin and Schroder.
Solution:
(a) The potential includes the following 4-point interaction vertices: (λ/4)(Φi)4 +
(λ/2)(Φi)2(Φj)2. If all four external particles are identical, i = j = k = l, only the
contraction with the first type of vertex is non-vanishing and the symmetry factor is
4! × (−iλ/4) = −6iλ, because there are 4! ways to contract the four identical bosons.
On the other hand, when the external particles are a pair of identical bosons, the symmetry
factor is 22× (−iλ/2) = −2iλ since there are four different ways to contract with the second
type of vertex.

The differential cross-section in the CM frame is given in Eq. (4.85) in Peskin and
Schroeder (

dσ

dΩ

)
CM

=
|A|2

64π2E2
cm

.

Using the Feynman rules it is easy to obtain the amplitudes for the three different scattering
processes: iA(φ1φ2 → φ1φ2) = −2iλ, iA(φ1φ1 → φ2φ2) = −2iλ, and iA(φ1φ1 → φ1φ1) =
−6iλ.
(b) Since the VEV minimizes the potential, the vanishing of first derivatives requires v2 =
µ2/λ. Then we have

V = −1

2
µ2
[
(πi)2 + (v + σ)2

]
+
λ

4

[
(πi)2 + (v + σ)2

]2
= −µ

2

4λ
+ µ2σ2 + µ

√
λσ3 +

λ

4
σ4 +

λ

4

(
(πi)2

)2
+
√
λµσ(πi)2 +

λ

2
σ2(πi)2.

Therefore σ is massive with a mass
√

2µ and the πi is massless.
Now we come to the Feynman rules. The 4-pt vertex with four pions is the same as in

(a), 4-pt vertex with two σ-fields and two pion fields πiπj is −2iλδij, and 4-pt vertex with

all four σ-field is −6iλ. For 3-pt vertices, all three with σ-field is −6iλv = −6i
√
λµ, and

with one σ-field and two pion-fields πiπj is −2iλv = −2iµ
√
λδij.

(c) The amplitude for πi(k1)π
j(k2)→ πk(p1)π

l(p2) is

iA =
−4iλ2v2

(k1 + k2)2 − 2µ2
δijδkl +

−4iλ2v2

(k1 − p1)2 − 2µ2
δikδjl +

−4iλ2v2

(k1 − p2)2 − 2µ2
δilδkj

−2iλ(δijδkl + δikδjl + δilδkj).
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At threshold k1 = k2 = p1 = p2 = 0 because the pion is massless. Then one sees A = 0. For
the special case N = 2, there is only one species of pions, the amplitude is

iA =
−4iλµ2

(k1 + k2)2 − 2µ2
+

−4iλµ2

(k1 − p1)2 − 2µ2
+

−4iλµ2

(k1 − p2)2 − 2µ2
− 2iλ.

When the momentum is small comparing to the mass µ, we can expand the propagator in
the large µ limit to O(p2):

iA =
iλ

µ2

[
(k1 + k2)

2 + (k1 − p1)
2 + (k1 − p2)

2
]

+O(p4).

Then using the momentum conservation k1 + k2 = p1 + p2 as well as the massless condition
k2

1 = k2
2 = p2

1 = p2
2 = 0, we see the A = 0 at order p2.

(d) The potential and the minimization condition is now

V = −1

2
µ2(Φi)2 +

λ

4
((Φi)2)2 − aΦN

∂V

∂Φj
= −µ2Φj + λΦj(Φi)2 − aδNj

The solution is 〈Φi〉 = δNiv, where v satisfies −µ2v + λv3 − a = 0. Treating a as a small

parameter we have v = µ/
√
λ + a/(2µ2). The spectrum of the theory is obtained by com-

puting the second derivative of the potential: m2
σ = ∂2V (0)/∂σ2 = 2µ2 + 3a

√
λ/µ and

m2
π = ∂2V (0)/∂π2 = a

√
λ/µ. So indeed the pion gets a mass proportional to a.

The Feynman rule also gets corrections due to a, which again can be obtained from
looking at the quartic term in the potential

λ

4
((πi)2 + (v + σ)2)2

The 4-pt vertex comes from computing ∂4V/∂φ4 and is not modified. The 3-pt vertex,
however, does get modified. The πi − πj − σ vertex comes from ∂3V/∂πi∂πj∂σ and the
σ − σ − σ vertex from ∂3V/∂σ3. But then we see the modification is simply replacing the

old v in (b) by the new v = µ/
√
λ + a/(2µ2). This observation makes it easy to compute

the scattering amplitude by replacing v in the amplitude in (c) with the new v as well as
the mass of the σ with the new mass:

iA =
−4iλ2v2

(k1 + k2)2 − 2µ2 − 3a
√
λ/µ

δijδkl +
−4iλ2v2

(k1 − p1)2 − 2µ2 − 3a
√
λ/µ

δikδjl

+
−4iλ2v2

(k1 − p2)2 − 2µ2 − 3a
√
λ/µ

δilδkj − 2iλ(δijδkl + δikδjl + δilδkj).

Now at threshold k2
1 = k2

2 = p2
1 = p2

2 = m2
π = a

√
λ/µ, (k1 + k2)

2 = 4m2
π, (k1 − p1)

2 =
(k1 − p2)

2 = 0. So now we have

iA = 2iλ

[(
1 +

3

2

a
√
λ

µ3

)
δijδkl +

(
1− 1

2

a
√
λ

µ3

)
(δikδjl + δilδkj)

]
−2iλ(δijδkl + δikδjl + δilδkj)

= 2iλ

[
3

2

a
√
λ

µ3
δijδkl − 1

2

a
√
λ

µ3
(δikδjl + δilδkj)

]
.
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Indeed, it is nonvanishing and proportional to a.

Problem 2
Consider a complex scalar field φ coupling to the muon (µ−) field µ and the neutrino (ν)
field νL through the following interaction

LI = CF (∂µφ)(µ̄γµνL) + (h.c.),

where we have assumed the neutrino is massless and exists only in the left-handed component
νL = (1/2)(1− γ5)ν. The complex scalar φ has a mass mφ and the muon has a mass mµ.
(a) Compute the differential cross-secion dσ/dΩ for the scattering process ν̄ + ν → µ+ + µ−

to leading order in CF in the centre-of-mass frame.
(b) Compute the total decay width Γ of the complex scalar to leading order in CF .
(c) We can think of the complex scalar φ as the charged pion π−. In the standard model
the coefficient of the interaction is

CF = 2 cos θcGF fπ

where cos θc = 0.974 is the cosine of the Cabbibo angle, GF = 1.166 × 10−5 GeV−2 is the
Fermi constant, and fπ is the pion decay constant. In addition, the pion mass is mπ =
139.6 MeV and the muon mass mµ = 105.7 MeV. The measured value of the charged pion
lifetime is 2.603 × 10−8s. Determine the value of fπ in MeV. By what percentage is your
result too big or too small?
Solution:
(a) Using the momentum and spin assignment ν(k1, r) + ν̄(k2, s) → µ−(p1, r

′) + µ+(p2, s
′),

the amplitude is

iA =
|CF |2

4
ūr

′
(p1)(−/k1 + /p1)(1− γ5)u

r(k1)
i

(k1 − p1)2 −m2
φ + iε

v̄s
′
(p2)(/p2 − /k2)(1− γ5)v

s(k2)

=
|CF |2

4
(−m2

µ)ūr
′
(p1)(1− γ5)u

r(k1)
i

(k1 − p1)2 −m2
φ + iε

v̄s
′
(p2)(1− γ5)v

s(k2)

where we have used Dirac equations to simplify the numerator in getting to the second line.
After summing over final spins and averaging over initial spins, the square of the amplitude
is then

1

4

∑
r,s

∑
r′,s′

|A|2 =

C4
F

64

m4
µ

[(k1 − p1)2 −m2
φ]2

Tr
[
(/p1 +mµ)(1− γ5)/k1(1 + γ5)

]
Tr
[
(/p2 −mµ)(1− γ5)/k2(1 + γ5)

]
=

C4
Fm

4
µ

[(k1 − p1)2 −m2
φ]2

(p1 · k1)(p2 · k2).

In the CM frame we define the Lorentz boost factors β = v, γ = 1/
√

1− β2, then the kine-
matics are given as follows: p1 = (mµγ,mµγβp̂), p2 = (mµγ,−mµγβp̂), k1 = (mµγ,mµγẑ),
and k2 = (mµγ,−mµγẑ). Also define cos θ = ẑ · p̂ so that k1 ·p1 = k2 ·p2 = m2

µγ
2(1−β cos θ).

Then the amplitude-squared in the CM frame is

1

4

∑
r,s

∑
r′,s′

|A|2 = C4
Fm

4
µ

γ4(1− β cos θ)2

(1− 2γ2(1− β cos θ)−m2
φ/m

2
µ)2
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As a simple check, the amplitude should be dimensionless, which indeed the case since
[CF ] = M−1. The differential cross-section is

dσ

dΩ
=

1

2E2
cm

mµγβ

(2π)24Ecm

1

4

∑
r,s

∑
r′,s′

|A|2

=
C4
Fm

2
µ

256π2

γ2(1− β cos θ)2

(1− 2γ2(1− β cos θ)−m2
φ/m

2
µ)2

where Ecm = 2mµγ. Again we see the differential cross-section has the dimension of L2.
(b) For φ(k)→ ν(p1, r) + µ−(p2, s), the amplitude is

iA = CF ū
s(p2)(/p1 + /p2)

1− γ5

2
us(p1)

=
CFmµ

2
ūs(p2)(1− γ5)u

s(p1)

where I have again used the Dirac equation to simplify the amplitude. The spin-summed
amplitude-squared is

∑
r,s

|A|2 =
C2
Fm

2
µ

2
Tr[(/p2 +mµ)/p1(1 + γ5)] = 2C2

Fm
2
µ(p1 · p2).

In the CM frame p1 = (p, pp̂) and p2 = (
√
p2 +m2

µ,−pp̂). Energy conservation determines

p = (m2
φ − m2

µ)/(2mφ),
√
p2 −m2

µ = (m2
φ + m2

µ)/(2mφ), and p1 · p2 = (m2
φ − m2

µ)/2. We
see that the ampliude-squared is isotropic in the CM frame and has no angular dependence.
Then ∫

dΓ =
1

2mφ

∫
dΠ2

∑
r,s

|A|2

=
p

8πEcmmφ

∑
r,s

|A|2

=
C2
F

16π

m2
µ

m3
φ

(m2
φ −m2

µ)2

(c) τ = 1/Γ = 2.603 × 10−8 s = 3.955 × 1014 MeV. From (b) we get fπ = 93.14 MeV.
Comparing with the measured fπ = 92.42 MeV, the result is too large by 0.7% due to the
electromagnetic loop corrections.
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